1 5 Ju l 2 00 5 A Combination Theorem For Convex Hyperbolic Manifolds , With Applications To Surfaces In 3 - Manifolds .

نویسنده

  • Daryl Cooper
چکیده

We prove the convex combination theorem for hyperbolic n-manifolds. Applications are given both in high dimensions and in 3 dimensions. One consequence is that given two geometrically finite subgroups of a discrete group of isometries of hyperbolic nspace, satisfying a natural condition on their parabolic subgroups, there are finite index subgroups which generate a subgroup that is an amalgamated free product. Constructions of infinite volume hyperbolic n-manifolds are described by gluing lower dimensional manifolds. It is shown that every slope on a cusp of a hyperbolic 3-manifold is a multiple immersed boundary slope. If a 3-manifold contains a maximal surface group not carried by an embedded surface then it contains the fundamental group of a book of I-bundles with more than two pages. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J ul 2 00 5 A Combination Theorem For Convex Hyperbolic Manifolds , With Applications To Surfaces In 3 - Manifolds

We prove the convex combination theorem for hyperbolic n-manifolds. Many applications are given both in high dimensions and in 3 dimensions. One consequence is that given two geometrically finite subgroups of a discrete group of isometries of hyperbolic n-space, satisfying a natural condition on their parabolic subgroups, there are finite index subgroups which generated a subgroup that is an am...

متن کامل

ul 2 00 5 A Combination Theorem For Convex Hyperbolic Manifolds , With Applications To Surfaces In 3 - Manifolds

We prove the convex combination theorem for hyperbolic n-manifolds. Applications are given both in high dimensions and in 3 dimensions. One consequence is that given two geometrically finite subgroups of a discrete group of isometries of hyperbolic nspace, satisfying a natural condition on their parabolic subgroups, there are finite index subgroups which generate a subgroup that is an amalgamat...

متن کامل

References for Geometrization Seminar References

[1] L. Ahlfors and L. Bers, Riemann’s mapping theorem for variable metrics, Ann. Math. 72 (1960), pp. 413– 429 [2] F. Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. Math. 124 (1986), pp. 71–158 [3] D. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, in Analytical and Geometric Aspects of Hyperbolic Space, LMS 111 (198...

متن کامل

A Combination Theorem for Convex Hyperbolic Manifolds, with Applications to Surfaces in 3-manifolds

We prove the convex combination theorem for hyperbolic n-manifolds. Applications are given both in high dimensions and in 3 dimensions. One consequence is that given two geometrically finite subgroups of a discrete group of isometries of hyperbolic n-space, satisfying a natural condition on their parabolic subgroups, and whose intersection is a separable subgroup, there are finite index subgrou...

متن کامل

O ct 2 00 1 TIGHT CONTACT STRUCTURES ON FIBERED HYPERBOLIC 3 - MANIFOLDS

We take a first step towards understanding the relationship between foliations and universally tight contact structures on hyperbolic 3-manifolds. If a surface bundle over a circle has pseudo-Anosov holonomy, we obtain a classification of “extremal” tight contact structures. Specifically, there is exactly one contact structure whose Euler class, when evaluated on the fiber, equals the Euler num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008